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Ray splitting in paraxial optical cavities
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Huygens Laboratory, Leiden University, P.O. Box 9504, Leiden, The Netherlands

~Received 19 November 2003; published 30 March 2004!

We present a numerical investigation of the ray dynamics in a paraxial optical cavity when a ray-splitting
mechanism is present. The cavity is a conventional two-mirror stable resonator and the ray splitting is achieved
by inserting an optical beam splitter perpendicular to the cavity axis. We show that depending on the position
of the beam splitter the optical resonator can become unstable and the ray dynamics displays a positive
Lyapunov exponent.
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I. INTRODUCTION

A beam splitter~BS! is an ubiquitous optical device in
wave optics experiments, used e.g., for optical interferen
homodyning, etc. In the context of geometrical optics, lig
rays are split into a transmitted and a reflected ray by a
Ray splitting provides a useful mechanism to generate c
otic dynamics in pseudointegrable@1# and soft-chaotic@2–5#
closed systems. In this paper we exploit the ray-splitt
properties of a BS in order to build an open paraxial cav
which shows irregular ray dynamics as opposed to the re
lar dynamics displayed by a paraxial cavity when the BS
absent. Although there is no real need to treat a para
optical cavity in the ray picture~one can always go back t
the wave optics which yields rather straightforward results
the paraxial approximation! and although we find that ou
system is nonchaotic, we feel that the issues that we raise
interesting from a conceptual point of view. This is partic
larly so as we will show in a future publication that a no
paraxial version of our systemcanyield chaos@6#; this result
can only be appreciated after a full understanding of
paraxial system~which shows a surprising complexity in it
own right!.

Optical cavities can be classified asstable or unstable
depending on the focusing properties of the elements
compose it@7#. An optical cavity formed by two concav
mirrors of radii R separated by a distanceL is stable when
L,2R and unstable otherwise. If a light ray is injected i
side the cavity through one of the mirrors it will rema
confined indefinitely inside the cavity when the configurati
is stable but it will escape after a finite number of bounc
when the cavity is unstable~this number depends on th
degree of instability of the system!. Both stable and unstabl
cavities have been extensively investigated since they f
the basis of laser physics@7#. Our interest is in a composit
cavity which has both aspects of stability and instability. T
cavity is made by two identical concave mirrors of radiiR
separated by a distanceL, whereL,2R so that the cavity is
globally stable. We then introduce a BS inside the cav
oriented perpendicular to the optical axis~Fig. 1!. In this way
the BS defines two subcavities. The main idea is that depe
ing on the position of the BS the left~right! subcavity be-
comes unstable for the reflected rays whenL1 (L2) is bigger
thanR, whereas the cavity as a whole remains always sta
(L11L2,2R) ~Fig. 2!.

Our motivation to address this system originates in
1063-651X/2004/69~3!/036209~6!/$22.50 69 0362
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nontrivial question whether there will be a balance betwe
trapped rays and escaping rays. The trapped rays are t
which bounce infinitely long in the stable part of the cavi
while the escaping ones are those which stay for a fin
time, due to the presence of the unstable subcavity. If s
balance exists it could eventually lead to transient ch
since it is known in literature that instability~positive
Lyapunov exponents! and mixing ~confinement inside the
system! form the skeleton of chaos@8#.

The BS is modeled as a stochastic ray-splitting elem
@2# by assuming the reflection and transmission coefficie
as random variables. Within the context of wave optics t
model corresponds to the neglect of all interference phen
ena inside the cavity; this would occur, for instance, wh
one injects inside the cavity a wave packet~or cw broad band
light! whose longitudinal coherence length is very mu
shorter than the smallest characteristic length of the cav
The stochasticity is implemented by using a Monte Ca
method to determine whether the ray is transmitted or
flected by the BS@2#. When a ray is incident on the ray
splitting surface of the BS, it is either transmitted through
with probability p or reflected with probability 12p, where
we will assumep51/2, i.e., we will consider a 50-50 beam
splitter ~Fig. 3!. We then follow a ray and at each reflectio
we use a random number generator with a uniform distri
tion to randomly decide whether to reflect or transmit t
incident ray.

Our system bears a close connection with the stability o

FIG. 1. Schematic diagram of the cavity model. Two subcavit
of length L1 and L2 are coupled by a BS. The total cavity is glo
bally stable forL5L11L2,2R. D5L12L/2 represents the dis
placement of the BS with respect to the center of the cavity.
©2004 The American Physical Society09-1
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periodic guide of paraxial lenses as studied by Longhi@9#.
While in his case acontinuousstochastic variablee repre-
sents a perturbation of the periodic sequence along w
rays are propagated, in our case we have adiscretestochastic
parameterpn which represents the response of the BS to
incident ray. As will be shown in Sec. II, this stochas
parameter can take only two values, either 1 for transmi
rays or21 for reflected rays; in this sense, our system~as
displayed in Fig. 4! is a surprisingly simple realization of
bimodal stochastic paraxial lens guide.

The structure of the paper is as follows. In Sec. II w
describe the ray limit, and the paraxial map orABCD matrix
associated with rays that propagate very close to the ax
the cavity. In Sec. III we present the results of the numer
simulations for the paraxial map associated with our ray

FIG. 2. The different positions of the beam splitter determ
the nature of the subcavities. In~a! the BS is in the middle, so two
subcavities are stable; in~b! the left cavity is unstable and the righ
one is stable, and~c! the unstable~stable! cavity is on the right
~left!.

FIG. 3. A ray on a reference plane (z5const) perpendicular to
the optical axisZ is specified by two parameters: the heightq above
the optical axis and the angleu between the direction of propaga
tion and the same axis. When a ray hits the surface of the BS, w
we choose to coincide with the reference plane, it can be ei
reflected or transmitted with equal probability. For a 50-50 be
splitter p51/2.
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tical system; these simulations are based on standard num
cal tools developed in nonlinear dynamics theory. Finally,
Sec. IV, we detail the conclusions of our work.

II. RAY DYNAMICS AND THE PARAXIAL MAP

The time evolution of a laser beam inside a cavity can
approximated classically by using the ray optics limit, whe
the wave nature of light is neglected. Generally, in this lim
the propagation of light in a uniform medium is described
rays which travel in straight lines and which are eith
sharply reflected or refracted when they hit a medium wit
different refractive index. To fully characterize the trajecto
of a ray in a strip resonator or in a resonator with rotatio
symmetry around the optical axis, we choose a refere
planez5const~perpendicular to the optical axisẑ), so that a
ray is specified by two parameters: the heightq above the
optical axis and the angleu between the trajectory and th
same axis. Therefore we can associate a ray of light wit
two-dimensional vectorrW5(q,u). This is illustrated in the
two-mirror cavity shown in Fig. 3, where the reference pla
has been chosen to coincide with the BS. Given such a
erence planez, which is also called Poincare´ surface of sec-
tion ~SOS! @10#, a round trip~evolution between two succes
sive reference planes! of the ray inside the cavity can b
calculated by the monodromy matrixMn , in other words
rWn115MnrWn , where the indexn determines the number o
round trips. The monodromy matrixMn describes the linear
ized evolution of a ray that deviates from a reference p
odic orbit. A periodic orbit is said to be stable ifuTr Mnu
,2. In this case nearby rays oscillate back and forth aro
the stable periodic orbit with bounded displacements both
q andu. On the other hand whenuTr Mnu>2 the orbit is said
to be unstable and rays that are initially near this refere
orbit become more and more displaced from it.

For paraxial trajectories, where the angle of propagat
relative to the axis is taken to be very small@i.e., sin~u!
>tan~u!>u#, the reference periodic trajectory coincides wi
the optical axis and the monodromy matrix is identical to t
ABCD matrix of the system. TheABCD matrix or paraxial
map of an optical system is the simplest model one can
to describe the discrete time evolution of a ray in the opti
system@7#. Perhaps the most interesting and important ap
cation of ray matrices comes in the analysis of periodic
cusing~PF! systems in which the same sequence of eleme

ch
er

FIG. 4. A ray bouncing inside an optical cavity can be rep
sented by a sequence of lenses of focusf 52/R, followed by a free
propagation over a distanceLn . Due to the presence of the BS, th
distanceLn varies stochastically betweenL1 andL2.
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RAY SPLITTING IN PARAXIAL OPTICAL CAVITIES PHYSICAL REVIEW E 69, 036209 ~2004!
FIG. 5. SOS for~a! D50 the ray does not
escape,~b! D50.001 m, the ray escapes aftern
553104 bounces, and~c! D50.02 m, the ray
escapes aftern5165 bounces.
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is periodically repeated many times down in cascade.
optical cavity provides a simple way of recreating a PF s
tem, since we can think of a cavity as a periodic series
lenses~see Fig. 4!. In the framework of geometric ray optics
PF systems are classified, as are optical cavities, as e
stable or unstable.

Without essential loss of generality we restrict ourselv
to the case of a symmetric cavity~i.e., two identical spherica
mirrors of radius of curvatureR). We take the SOS coinci
dent with the surface of the BS. After intersecting a giv
reference planezi , a ray is transmitted~reflected!, it will
undergo a free propagation over a distanceL2 (L1), followed
by a reflection on the curved mirrorM2 (M1), and continue
propagating over the distanceL2 (L1) to hit the surface of
the beam splitter again atzi 11. In Fig. 4 the sequence ofzi
represents the successive reference planes after a round
In the paraxial approximation each round trip~time evolution
between two successive intersections of a ray with the b
splitter! is represented by

qn115Anqn1Bnun ,

un115Cqn1Dnun , ~1!

where

An5122Ln /R, Bn52Ln~12Ln /R!,

C522/R, Dn5122Ln /R,

and

Ln5
L1pna

2
.

We have definedL5L11L2 anda5L22L1; the stochastic
parameterpn is distributed equally among21 and11 for
our 50-50 BS, and determines whether the ray is transmi
(pn51) or is reflected (pn521).

The elements of theABCD matrix depend onn because
of the stochastic response of the BS, which determines
propagation for the ray in subcavities of a different leng
~eitherL1 or L2). In this way a random sequence of refle
tions (pn51) and transmissions (pn521) represents a par
ticular geometrical realization of a focusing system. If w
want to study the evolution of a set of rays injected in t
cavity with different initial conditions (q0 ,u0), we have two
possibilities, either use thesamerandom sequence of reflec
tions and transmissions for all rays in the set or use adiffer-
ent random sequence for each ray. In the latter case, we
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basically doing an ensemble average over different geom
cal configurations of focusing systems. As we shall see la
it is convenient, for computational reasons, to adopt the s
ond method.

In the following section we report several dynamic
quantities that we have numerically calculated for parax
rays in this system, using the map described above@Eq. ~1!#.
The behavior of these quantities, namely, the SOSs, the
basins, the Lyapunov exponent, and the escape rate, is
lyzed as a function of the displacement (D) of the BS with
respect to the center of the cavity~see Fig. 1!.

III. RESULTS

The paraxial map of Eq.~1! describes an unbounded sy
tem, that is, rays are allowed to go infinitely far from th
cavity axis. In order to describe a physical paraxial cavity
have to keep the phase space bounded, i.e., it is necessa
artificially introduce boundaries for the position and t
angle of the ray@11#. The phase space boundaries that
have adopted to decide whether a ray has escaped af
number of bounces or not are the beam waistw0 and the
diffraction half angleQ0 of a Gaussian beam confined in
globally stable two-mirror cavity. Measured at the center
the cavity, w0

25(LlLight /p)A(2R2L)/4L and the corre-
sponding diffraction half angleQ05arctan(lLight /pw0). @7#
For our cavity configuration we assumeR50.15 m, L
50.2 m, andlLight5500 nm, from which it follows that
w055.331025 m and Q050.1531023 rad. One should
keep in mind that this choice is somewhat arbitrary and ot
choices are certainly possible. The effect of this arbitrarin
on our results will be discussed in detail in Sec. III D.

A. Poincaré surface of section

We have first calculated the SOS for different positions
the BS. In order to get a qualitative idea of the type of m
tion, we have chosen as transverse phase space variaby
5q andvy5sin(u)'u. The successive intersections of a tr
jectory with initial transverse coordinatesq05131025 m
andu050 are represented by the different black points in
surface of section. The different SOSs are shown in Fig. 5
Fig. 5~a! we show the SOS forD50, while in Fig. 5~b! D
5131023 m and in Fig. 5~c! D5231022 m. In Fig. 5~a! it
is clear that the motion is completely regular~nonhyper-
bolic!; the on-axis trajectory represents an elliptic fixed po
for the map. In Fig. 5~b!, where the BS is slightly displace
from the center (D5131023 m), we can see that this sam
trajectory becomes unstable because of the presence o
9-3
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PUENTES, AIELLO, AND WOERDMAN PHYSICAL REVIEW E69, 036209 ~2004!
BS and spreads over a finite region of the phase spac
escape after a large number of bounces (n553104). In this
case we may qualify the motion as azimuthally ergodic. T
fact that the ray-splitting mechanism introduced by the
produces ergodicity is a well-known result@2# for a closed
billard. We find here an analog phenomenon, with the diff
ence that in our case the trajectory does not explore
formly ~but only azimuthally! the available phase space, b
cause the system is open. Finally, in Fig. 5~c! we see that the
fixed point in the origin becomes hyperbolic, and the init
orbit escapes after relatively few bounces (n5165).

B. Exit basin diagrams

It is well known that chaotic Hamiltonian systems wi
more than one exit channel exhibit irregular escape dynam
which can be displayed, e.g., by plotting the exit basin@12#.
For our open system we have calculated the exit basin
grams for three different positions of the BS~Fig. 6!. These
diagrams can be constructed by defining a fine grid (2
32200) of initial conditions (q0 ,u0). We then follow each
ray for a sufficient number of bounces so that it escapes f
the cavity. When it escapes from above (un.0) we plot a
black dot in the corresponding initial condition, where
when it escapes from below (un,0) we plot a white dot.

In Fig. 6~a! we show the exit basins forD50.025 m, the
uniformly black or white regions of the plot correspon
to rays which display a regular dynamics before escap
and the dusty region represents the portion of phase s
where there is sensitivity to initial conditions. In Fig. 6~b!,
we show the same plot forD50.05 m, and in Fig. 6~c! for
D50.075 m.

The exit basin plots in Fig. 6 illustrate how the scatteri
becomes more irregular as the BS is displaced from the
ter. In particular, we see how regions of regular and irregu
dynamics become more and more interwoven asD increases.
Instead, for small values ofD as in Fig. 6~a!, we can see tha
there is a single dusty region with a uniform distribution
white and black dots in which no islands of regularity a
present.

C. Escape rate and Lyapunov exponent

The next dynamical quantities we have calculated are
escape rateg and the Lyapunov exponentl. The escape rate
is a quantity that can be used to measure the degree of o
ness of a system@11#. For hard chaotic systems~hyperbolic!,
the numberNn of orbits still contained in the phase spa
after a long time~measured in number of bouncesn) de-
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creases asN0exp(2gn), while for soft chaotic systems, th
stickiness to Kolmogorov-Arnold-Moser islands~or islands
of stability! leads to a power law decayN0n2g @13#. The
Lyapunov exponent is the rate of exponential divergence
nearby trajectories.

Since bothl andg are asymptotic quantities they shou
be calculated for very long times. In our system long livin
trajectories are rare, and in order to pick them among the
of initial conditionsN0 one has to increaseN0 beyond the
computational capability. To overcome this difficulty w
choose a different random sequence for each initial con
tion. In this way we greatly increase the probability of pic
ing long living orbits given by particularly stable rando
sequences. These long living orbits in turn make possible
calculation of asymptotic quantities such asl or g.

The escape rateg was determined measuringNn , as the
slope of a linear fit in theNn /N0 versusn curve, in a loga-
rithmic scale; the total number of initial conditionsN0 being
chosen as 220032200.

We have calculated the dependence ofg with the dis-
placementD of the BS from the center of the cavity, wher
0<D<L/2. Since forD.R2L/2 the left subcavity become
unstable, it would seem natural to expect that this position
the BS would correspond to a critical point. However, w
have found by explicit calculation of both the Lyapunov e
ponent and the escape rate that such a critical point does
manifest itself in a sharp way, rather we have observe
finite transition region~as opposed to a single point! in
which the functional dependence ofl and g change in a
smooth way. In Fig. 7~a! we show the typical behavior o
Nn /N0 vs n in semilogarithmic plot for three different pos
tions of the BS. The displacements of the BS areD50.0875
m, 0.05 m, and 0.03125 m, and the corresponding slo
~escape rateg measured in units of the inverse number
bounces n) of the linear fit are g50.17693n21,
0.05371n21, and 0.01206n21, respectively. We have found
that the decay is exponential only up to a certain time~'70–
1000 bounces depending on the geometry of the cavity! due
to the discrete nature of the grid of initial conditions.

In Fig. 7~b! we see thatg increases withD, revealing that
for more unstable configurations there is a higher escape
as expected. It is also interesting to note that the expone
decay fits better when the beam splitter is farther from
center position, since this leads to smaller stability of t
periodic orbits of the system. However, the dependence
the escape rate with the position of the BS is smooth
reveals that the only critical displacement, where the esc
rate becomes positive, isD50.
FIG. 6. Exit basins for~a! D50.025 m, ~b!
D50.05 m, and~c! D50.075 m.
9-4
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FIG. 7. ~a! Linear fits used to calculate the escape rate for three different geometrical configurations of the cavity given byD50.031 25
m, D50.05 m, andD50.0875 m. The time is measured in number of bounces (n). The slopeg is in units of the inverse of time (n21). ~b!
shows the escape rateg (n21) as a function ofD. ~c! corresponds to different Lyapunov exponentsl (n21) as the BS moves from the cente
D50 to the leftmost side of the cavityD50.10 m.~d! shows the differencel2g (n21), which is a positive bounded function.
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As a next step, we have calculated the Lyapunov expon
l for the paraxial map;l is a quantity that measures th
degree of stability of the reference periodic orbit. For a tw
dimensional Hamiltonian map there are two Lyapunov ex
nents (l1 , l2) such thatl11l250. In the rest of the pape
we shall indicate withl the positive Lyapunov exponen
which quantifies the exponential sensitivity to the initial co
ditions. We have calculatedl for the periodic orbit on axis,
using the standard techniques@14#, and we have found tha
the Lyapunov exponent grows from zero with the distance
the BS to the center@Fig. 7~c!#. Therefore, the only critica
point revealed by the ray dynamics is again the center of
cavity ~D50!, where the magnitudes change from zero to
positive value. This result also shows that the presence o
BS with its stochastic nature introduces exponential sens
ity to initial conditions in the system for everyDÞ0, even
when both subcavities are stable. This surprising fact can
explained by taking into account the well-known probabil
tic theorem by Furstenberg on the asymptotic limit of the r
of growth of a product of random matrices~PRM! @15#.
From this theorem we expect that the asymptotic behavio
the productMn of a uniform sequencev of independent,
random, unimodular,D3D matrices, and for any nonzer
vectoryWPRD, is

lim
n→`

1

n
^ lnuMnyW u&5l1.0, ~2!

wherel1 is the maximum Lyapunov characteristic expone
of the system, and the angular brackets indicate the ave
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over the ensembleV of all possible sequencesv. This means
that for PRM the Lyapunov exponent is a nonrandom po
tive quantity. In general, it can be said that there is a s
spaceV* of random sequences which has a full meas
~probability 1! over the whole space of sequencesV for
which nearby trajectories deviate exponentially at a ratel1.
Although there exist very improbable sequences inV which
lead to a different asymptotic limit, they do not change t
logarithmic average@Eq. ~2!# @16#. We have verified this re-
sult, calculating the value ofl for different random se-
quencesv i , in the asymptotic limitn5100 000 bounces
and we obtained in all cases the same Lyapunov expone

D. Mixing properties

Dynamical randomness is characterized by a posi
Kolmogorov-Sinai~KS! entropy per unit timehKS @17#. In
closed systems, it is known that dynamical randomness
direct consequence of the exponential sensitivity to ini
conditions given by a positive Lyapunov exponent. On t
other hand, in open dynamical systems with a sin
Lyapunov exponentl, the exponential sensitivity to initia
conditions can be related tohKS through the escape rateg by
the relation@18#

l5hKS1g. ~3!

This formula reveals the fact that in an open dynamical s
tem the exponential sensitivity to initial conditions induc
two effects: one is the escape of trajectories out of the ne
9-5
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borhood of the unstable reference periodic orbit at an ex
nential rateg and the other one is a dynamical randomn
because of transient chaotic motion near this unstable o
@18#. This dynamical randomness is a measure of the de
of mixing of the system and as mentioned before it is qu
tified by hKS . Therefore, for a givenl, the larger the mixing
is, the smaller the escape rate, and vice versa. From F
7~b! and 7~c! it is evident that the Lyapunov exponent an
the escape rate have the same smooth dependence on t
displacementD and thatg<l. We have calculated the differ
encel2g.0 for our system and the result is shown in F
7~d!.

The actual value ofg~D! depends, for a fixed value ofD,
on the size of the phase space accessible to the system@11#,
that is, it depends onw0 andu0. We verified this behavior by
successively decreasingw0 and u0 by factors of 10~see
Table I!, and calculatingg for each of these phase spa
boundaries. It is clear from these results thatg increases
when the size of phase space decreases; in fact forw0 ,u0
'0, one should getl'g and the cavity mixing property
should disappear. It is important to note that the incremen
g with the inverse of the size of the accessible phase spa
a general tendency, independent of the arbitrarily cho
boundaries.

It is important to stress that, although the randomn
introduced by the stochastic BS is obviously independ
of the cavity characteristics,l and g show a clear depen
dence on the BS position. When the BS is located at

TABLE I. Escape rate for different phase space boundaries
the boundary shrinksg~D! tends to the corresponding value
l(D)50.29178n21. In these calculations the displacement of t
BS wasD50.0875 m.

(w0 ,u0) 3100 31021 31022 31023

g 0.17639 0.17596 0.19559 0.25259
es
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center of the cavity it is evident for geometrical reasons t
the ray-splitting mechanism becomes ineffective:l505g.
These results confirm what we have already shown in
SOS~Fig. 4!.

IV. CONCLUSIONS

We have been able to characterize the ray dynamics of
optical cavity with ray splitting by using standard techniqu
in nonlinear dynamics. In particular we have found, bo
through the SOS and the exit basin diagrams, that the
chastic ray-splitting mechanism destroys the regular mo
of rays in the globally stable cavity. The irregular dynami
introduced by the beam splitter was quantified by calculat
the Lyapunov exponentl; it grows from zero as the beam
splitter is displaced from the center of the cavity. Therefo
the center of the cavity constitutes the only point where
dynamics of the rays is not affected by the stochasticity
the BS. The escape rateg has been calculated and it ha
revealed a similar dependence with the position of the be
splitter to that ofl. Furthermore, we have verified that th
absolute value of the escape rate tends to that of
Lyapunov exponent as the size of the available phase s
goes to zero. This result confirms the fact that the escape
and therefore the mixing properties of a map depend se
tively on the choice of the boundary@11#. Because of this
dependence we cannot claim that our system is chaotic,
spite the positiveness ofl. However, in a future publication
we shall demonstrate that ray chaoscan be achieved for the
same class of optical cavities whennonparaxial ray dynam-
ics is allowed@6#.
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